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dimensions 
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$ University of Mons, 7000, Mons, Belgium 
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Abstract. Linear relations among the fields of a gauge theory in eight dimensions derived 
from a secular equation invariant under a SO(7) subgroup are particularly interesting. We 
present here the spherical solutions corresponding to this case when the gauge group is 
SO(7) or SO(8). In the former case the solution can be made regular everywhere. 

1. Introduction 

Increased attention has been focused recently on theories, be they gauge type (Corrigan 
et a1 1983, Fairlie and Nuyts 1984) or supersymmetric (Cremmer et al 1978, Englert 
et a1 1983, Englert 1983), in dimension D higher than four. In two recent papers 
(Corrigan et a1 1983, Fairlie and Nuyts 1984), we have outlined the general approach 
to the generalisation of the usual self-duality in four dimensions for gauge theories in 
higher dimensions. Linear relations among the fields F derived from the secular 
equation (p ,  v, p ,  CT = 1, . . . , 8 )  

hF,Y = T,”pUFpm (1.1) 
where T is a constant, arbitrary, completely antisymmetric tensor and A a non-zero 
eigenvalue, imply the equations of motion 

D,F,,, = 0 (1.2) 

D, A F,, = 0 (1.3) 

as a consequence of the Bianchi identities 

where A stands for complete antisymmetry in p, p and U. We have stressed the 
particular importance of the stability group of T. When D is eight and T is invariant 
under an G ( 7 )  subgroup of SO(8) ( a ( 7 )  is the covering group of S0(7)) ,  we have 
obtained particularly nice sets of equations. Either (A, B = 1 , .  . . , 7 )  

or 

where the seven 8 X 8 matrices A and the 21 (A, B antisymmetric) 8 x 8 matrices R are 
defined in the appendix. 
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In a first approach aimed at finding the solutions of these generalised linear 
equations we have studied here the SO(7) spherically symmetric solutions for an SO(7) 
or SO(8) gauge theory in an eight-dimensional space. 

2. Spherically symmetric solutions 

Let A be the potentials of an SO(8) gauge theory in an eight-dimensional space (space 
group SO(8) acting on an eight-dimensional x). Using the spherical symmetry under 
an a ( 7 )  subgroup of both groups, the general form of A (antisymmetric in a and /3) 

depends only on two x-squared dependent functions: F which describes the 21 part 
in aP and G which describes the 7 part (lower case Greek indices run from 1 to 8 
and Latin capitals from 1 to 7). 

When 

G = O  (2.2) 

the gauge group is effectively reduced to SO(7) only, so that SO(7) and SO(8) gauge 
theories will be treated together. When 

G = 2 F  (2.3) 

A;’ =2F(6ExU -SEX’). (2.4) 

F$ = a,AZP - +A;YAzP - AE’A;’, (2.5) 

equation (2.1) is fully SO(8) spherically symmetric. Indeed, in this case 

The fields, defined by 

can then be written in terms of five independent tensors, which may involve the 35 
piece of the symmetrised product 

x,, = xp.. -$,,x2. (2.6) 
After some algebra, using the identities (A17)-(A24) of the appendix, one obtains 

FE{ = R$SZty8(2 F +;F’x2 - 5 F2x2 - $G2x2) 

+A$Acu(2G +fG’x2-6FGx2) 

+ xPu( R ,Cy”@;?“”)( -L 4 2 2  F’ - ‘ F ~  - ‘ G ~ )  

+ XPu( SZ ::A$2 FA*”) (--$F’ - 3 F2 + G2)  

+ Xpu( A ,C,R $ZFA~~) (  -aG‘ - 2FG) (2.7) 
where the prime denotes differentiation with respect to x squared. 

are satisfied: 
There will be no 7 part in F (i.e. F satisfies (1.4)) if the two following equations 

2 G  ++G’x2-6FGx2=0, 

-fF’- 3F2  + G 2  = 0, 
(no 7) 

while there will be no 21 part in F (i.e. F satisfies (1.5)) if the three following equations 
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are satisfied: 

2F+tF 'x2-5F2x2-$G2x2 =O, 

-iF' - IF2 2 2  - 'G2 = 0 3 (no 21) 

-$G'-2FG=O. 

If we look for solutions which behave asymptotically as an inverse square law 

F = f/x2, 

G = g/x2,  

we obtain in the first case (no 7 part) 

g ( l -4f )=O,  

f - 6f2 +2g2 = 0, 

i.e. the two possibilities 
(IA): g=O, f = '  6, 

g = *' (IB): f =' 4, 4. 

corresponding to an SO(7) gauge group or 

(2.10) 

(2.1 1 )  

(2.12) 

(2.13) 

However, in the second case (no 21 part) there is no such solution, as can easily 
be checked. This result could have been foreseen in the following way. Written with 
the complex variables 

y = xI  +ix2, z = x3 + ix,, 

w=xg+ix6, t = x, +ix8, 
(2.14) 

the 21 equations (A1 1)  have the following three equations as a subset: 

F - = F  Y Z  Y W  -=F-=O Yt (2.15) 

together with their complex conjugates. From this one finds easily that A has to be a 
pure gauge, 

A, = K-'d,K, (2.16) 
i.e. that F must be zero. (In the proof one has to take into account that, since a ( 7 )  
is democratically embedded in S0(8), by its very form (2.1) the A's for a given p 
depend on all eight x.) 

3. Conclusion 

In this paper we have shown that there are a(7) spherically symmetric solutions of 
the secular equation ( l . l ) ,  for gauge theories with gauge group SO(7) (see (2.1 1 ) )  or 
SO(8) (see (2.12)) in an eight-dimensional space. It is, however, amusing to note that 
these solutions exist only for the 21-dimensional case (no 7 ) ,  i.e. when F belongs to 
the space of the adjoint representation of the gauge group. One may wonder if this 
is a result valid in general. Remember that in the four-dimensional case both self-duality 
and anti-self-duality for the fields correspond to the restriction to one of the two SU(2) 
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subgroups in S0(4), according to 

SO(4) = (SU(2) XSU(2))/Z,. (3.1) 

The solutions which we have found and which are singular at the origin can easily 
be generalised in two ways. First by shifting the origin at any place a, 

x ,  + xp - a,. (3.2) 

x 2 + x 2 + k  (3.3) 

The singularity can be removed altogether by the replacement 

with an arbitrary constant k in the case g = 0 (2.12). 

Appendix 

We have shown in Corrigan et a1 (1983) and Fairlie and Nuyts (1984) that the seven 
following linear relations in S0(8), 

Fg I + F 7 2  + F 4 5  + F36 = 0, 

F82 + Fi7 + F35 + F64 = 0, 

( - 4 1 )  

(A21 

imply the equations of motion through a secular equation ( 1 . 1 )  where T is invariant 
under @(7), with eigenvalue 1. Equations (Al)-(A7) can be written ( p u  = I , .  . . , 8 )  
( B  = 1, . . . , 7 )  

h$Fp, = 0 (A81 

by defining the Bth antisymmetrix matrix A as having zeros everywhere except four 
times +1 when needed by (AB) and four times -1 by antisymmetry. In what follows 
capital Latin indices will run from 1 to 7 and lower case Greek indices from 1 to 8. 

Through the seven equations (AS) the 28-dimensional F space is restricted to a 
21 -dimensional subspace. The orthogonal complement corresponds to the second 
eigenvalue -3. It is seven dimensional (21 linear relations), 

Q,”,”F,,,=O, (A9) 

0;: ==f(~;~il;,,-~,&~-t\Y). (‘410) 

where the Q’s are antisymmetric both in p u  and in AB, 

The equations (A9) are equivalent to the equations obtained from (AI)-(A7) by 
equating the F’s appearing in them line by line, namely 

Fgl = F72 = F45 = F36 (A1 1)  
and six other relations of that form. 
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The A and R matrices can be thought of as being the Clebsch-Gordan coefficients 
for the couplings 

8 ~ 8 + 7 : A  ('412) 

8 ~ 8 + 2 1 :  R. (A131 

and 

Let us now recall the useful products of representations in a ( 7 )  

7 x 7 =  1,+21,+27,, 8 x 8 =  1,+7,+21,+35,, 

7 X21= 7 +35 + 105, 7 x8 = 8 +48, ('414) 

21 X21= 1,+21,+27,+35,+168,+189,, 

and related Clebsch-Gordan coefficients 

7x21+35 ,  

E 
( A 1 9  

= &( ( A :yR t'," + ( a p  ) ) - Tr ( p a )  ) 

where + ( u p )  symmetrises in p and a and -Tr(ap) extracts the trace part so as to 
make X symmetric and traceless in p and g. 

The following identities have been used in the text: 
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